
1

AMReX in 2020: Porting for 
Performance to GPGPU Systems

2020 Performance, Portability, and 
Productivity in HPC Forum

Kevin Gott, Andrew Myers and Weiqun Zhang
Lawrence Berkeley National Laboratory

Sept 1, 2020

https://p3hpcforum2020.alcf.anl.gov/


2

AMReX: Block-Structured AMR Co-Design Center

• Mesh, Particle, AMR, Linear Solvers, Cut-Cell 
Embedded Boundary
• Written primarily in C++, with Fortran 
interfaces
• MPI + X

-- OpenMP on CPU
-- CUDA, HIP, DPC++ internally on GPU

• Solution of parabolic and elliptic systems using 
geometric multigrid solvers.
• Support for multiple load balancing
strategies.
• HDF5 and native I/O formatting supported by 
Visit, Paraview, yt and Amrvis.



3

AMReX Across Science

Combustion (Pele) Astrophysics (Castro) Cosmology (Nyx)

Accelerators (WarpX)

Multiphase flow (MFIX-Exa)

Other applications:
● Phase field models
● Microfluids
● Ionic liquids
● Non-Newtonian flow
● Fluid-structure 

interaction
Exawind

● Shock physics
● Cellular automata
● Low Mach number 

astrophysics
● Defense science



4

Exascale Strategy
• Port with native models: (CUDA/HIP/DPC++).

o Vendor API calls wrapped in AMReX functions. User doesn’t need to 
directly use them (or pragma methods), but still can, if desired.

• Encourage users to move to C++.
o Users may utilize Fortran interfaces, but development focus will be C++.

• Seek and implement portable performance solutions.
o Native, C++ based solutions are preferable.

• Leverage available vendor support and user expertise.
o Remain open to all improvements and observations to maximize 

performance at launch.



Porting to Exascale



6

Overview of GPU Porting Strategy
• Native CUDA/HIP/DPC++ implementation.

o Begin with focus on matching software and hardware. Cross-
platform performance and implementations will be studied when 
interest arises.

• First design pass based on CUDA implementation. 
o Streams, managed memory, minimize data movement, etc.

• Working directly with engineers from both AMD and Intel.
o Testing, discussing and improving the new compilers, libraries and 

required features.



7

Overall Porting Progress
CUDA HIP DPC++

● CUDA port completed
and successful.

● Most ECP applications 
are finishing port or 
beginning 
performance 
development.

● Actively conducting 
portable performance
studies in CUDA, based 
on CUDA paradigm.

● HCC port was successful, 
but limited by compiler 
features.

● HIP-clang port is underway, 
working with HIP and HPE 
engineers through email and 
Confluence.

● Developing primarily on Tulip.

● Once compiler is ready, 
expect a smooth transition, 
given target is CUDA 8 and our 
previous HCC experience.

● DPC++ port actively 
underway. Regular Zoom 
meetings with Intel and 
Argonne engineers.

● Developing on Iris and Intel’s 
DevCloud.

● Good progress made, with 
numerous issues and feature 
requests investigated.

● Performance to be 
investigated soon.



8

Porting Status
Overview of the current feature requests and issues for HIP and DPC++ 
is available in the AMReX repo: 

https://github.com/AMReX-Codes/amrex/tree/development/Docs/Notes/HIPIssues.md
https://github.com/AMReX-Codes/amrex/tree/development/Docs/Notes/DPCPPWishlist.md

Relevant regression testing is also underway:
https://github.com/WeiqunZhang/amrex-gpu-status/

Recent talk on progress with Intel: “Early Experiences Supporting DPC++ 
in AMReX”:

https://intel-hpc-ai-pavilion.gallery.video/detail/videos/hpc/video/6164671339001/early-experiences-
supporting-dpc-in-amrex

Overall, very pleased with the support being given by AMD and Intel.

https://github.com/AMReX-Codes/amrex/tree/development/Docs/Notes/HIPIssues.md
https://github.com/AMReX-Codes/amrex/tree/development/Docs/Notes/
http://dpcppwishlist.md/
https://github.com/WeiqunZhang/amrex-gpu-status/
https://intel-hpc-ai-pavilion.gallery.video/detail/videos/hpc/video/6164671339001/early-experiences-supporting-dpc-in-amrex


Portable Performance Development



10

Performance Strategy
5 Categories of Performance Development:

1) Maximize FLOPs for Floating Point Work. (GPU)

2) Improve Metadata performance. (CPU + OpenMP)

3) Minimize / Improve Comms.

4) Obfuscate I/O Operations.

5) Extend Parallelism wherever possible. Longer-term strategies 
under initial investigation.

Ongoing by AMReX 
developers, app 
teams and users.

Async I/O is implemented 
and available.



11

Fused Launches

Added mechanism to fuse small 
kernels to reduce launch overhead.

• Based on RAJA’s implementation.

• Moves selected device lambdas to 
GPU to be ran together.

• At least 20% speedup for 32^3 or 
smaller boxes.

• Working on fully automated
implementation.

Gpu::FuseSafeGuard fsg(true);

for (MFIter mfi(mfc); mfi.isValid(); ++mfi) {

if (fuse_this_kernel(mfi)){

amrex::Gpu::Register(vbx, 

[=] AMREX_GPU_DEVICE (int i, int j, int k)

{

<Kernel contents>

});

}

else { <launch normally> }

} 

amrex::Gpu::LaunchFusedKernels();

Register a kernel to be fused.

Launch the chosen fused kernels.

Turn fusing on.



12

Particle-Mesh operations on V100
Particle-mesh operations benefit from 
periodic sub-grid sorting to take 
advantage of memory hierarchy.

• > 6x speedup over unsorted 
deposition / gather.

• Flexibility in tile size and sorting 
interval allows tuning.

• Exploring ML approaches to 
choosing optimized parameters 
for different regimes.



13

GPU Load Balancing

Developing accurate runtime 
GPU kernel timers.

• Researching both CUPTI
and native timers for load 
balancing of GPU-based 
simulations.

• GPU-side timing has 
proven very efficient
for load balancing 
many AMReX cases.



14

Async I/O
Hides I/O time by writing to file on a 
copy of data while work continues 
asynchronously.

• Primarily designed for GPU runs, 
but can also benefit CPU.

• Targeted method for all exascale 
systems.

• Also being developed by HDF5.

• Requires scalable 
MPI_THREAD_MULTIPLE.

Speed up for print using different I/O messaging strategies 
when asynchronously overlapped with repeated Min and 
Max calculations (MPI_Reduce). (2 Threads).



15

Next Steps / Upcoming Performance 

Performance issues under consideration:

• Memory pool with defragmentation.

• CPU + GPU asynchronous work across grids.

• Coarse-grained parallelization identification.

• AMReX-specific MPI regression testing.

Primary focus: Continue HIP and DPC++ porting.



16

Thank you for listening!



17

GPU Roofline

AMReX and its applications are using 
roofline analyses to get absolute 
performance measurements on GPU 
systems.

• Especially useful to find complex 
kernels in applications that should be 
targeted for study.

• Nsight Compute has proven popular 
and effective for quick analyses.



18

Particle Redistribution

Assigning and moving particles to the 
proper level, grid, and MPI rank is one 
of the main parallel communication 
patterns in AMReX applications.

• Algorithm runs completely on 
GPU, taking advantage of 
AMReX parallel prefix sum
implementation.

• Weak scaling to full Summit, 
with or without mesh refinement.


